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ABSTRACT 

Generalization of the Avratn-Erofeev equation to non-isothermal solid-state reaction 
kinetics has been discussed. The derivation of an alternative form of this equation to be used 
in non-isothermal analyses has been, given. 

INTRODUCTION 

The Avrami-Erofeev equation and related equations [l-3], describing 
isothermal reaction kinetics in the solid state have often been used in 
non-isothermal kinetic analyses without further modification [3]. The valid- 
ity of this procedure has been questioned [4]. Extension of the 
Avrami-Erofeev equation to non-isothermal conditions has previously been 
given for special types of solid transformation [3]. 

In the present article this problem is reformulated, and an alternative 
form of the extended Avrami-Erofeev equation is derived. 

THEORY AND DISCUSSION 

Consider a non-isothermal, irreversible reaction based on formation and 
growth of nuclei in the solid state. The process starts at zero time, and the 
rate of nucleation, #( y), at time y ( 2 0) is assumed to be given by a power 
law of nucleation, ti = k,( y)y”, where u + 1 denotes the number of steps in 
the nucleation [2]. Assuming spherical nuclear growth and ignoring, for the 
time being, that the growing spheres may overlap, we obtain for the rate of 
change of reaction volume at time t (and temperature T), v= dV/dt 
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The line integral j,‘k(x) dx is the radius, r, at time t .of a sphere nucleated 
at y. The differential dr is due to a variation dy at y and is defined by 

dz/‘k(x) dx-Jf 
.v y+d.v 

k(x) dx=Jy+dYk(x) dx=k(y) dy 
Y 

This is an inexact differential, contained in eqn. (1). The use of inexact 
differentials and line integrals in rate expressions, such as eqn. (l), is in 
agreement with current kinetic theories. 

Equation (1) is easily solved at constant temperature (and pressure). To 
simplify the solution in the non-isothermal case, it is changed into the form 

(2) 

The rate constants k and k, are taken to be of the Arrhenius form k = A 
exp( - E/RT), etc., so that, by a Taylor series expansion 

k(kx) [y “;i~‘l”‘_exp[ RET T-$4 _Ego T;$J)] 

O” 1 
= E:[ E T- T(x) E+E, T- T(y) ’ -- 

i=o l! RT T(x) -2RT T(Y) 1 (3) 

Usually, T - T(x) -=z T(x) and T - T(y) CC T(y), so that the series should 
converge quite rapidly when E/RT and (E + E,)/2RT are not too far from 
unity. Furthermore 

T;x, =+ 1 -[T- 

T-T(x) n 

T 1 
a binomial series which normally converges rapidly. However, introducing 
this expression into the preceding series leads to an unduly complex integral. 
We therefore use the average of l/T(x) in eqn. (3). This is normally a very 
good approximation. The average is defined as 

(4 

by eqn. (4). t? = dT( x)/dx is taken to be constant, so that T - T(y) = 8( t - 
y ). Thus 

x [b’+’ -(u + b):+‘] (5) 

E+E, 1 
and b s - ~ - 

2R T(Y)’ 
Squaring eqn. (5), re- 
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arranging and substituting it into eqn. (2) yields, finally 

v= 4vk3k, 

=4&ko!++3 

a 

i+j-‘(i+j)! [b’-(a+b)‘][bi-(a+b)j] 

(a+i+j+l)! 

(6) 
where we have used the integral 

/ 
)‘(t -y)” dy = 

n!a! o+n+l 

0 (o+n+l)!t 
(7) 

a and b have been redefined as 

E 1 
a=-- - 

R 
(( )) T(x) 

where 

by eqn. (4), and 

in analogy with eqn. (4). These are usually very good approximations in eqn. 

(6). 
It is assumed, given the adopted model, that the system would in principle 

undergo the same physical and chemical (geometric) changes under isother- 
mal conditions. Hence, starting the isothermal reaction at a proper time y,,, 
we may require the isothermal reaction rate at time t to be equal to that of 
the actual, non-isothermal process starting at t = 0; thus, we require 

v(isotherma1) = v( non-isothermal) at t 03) 
With y, as the starting point, we obtain from eqn. (1) at constant 

temperature, using eqn. (7) 

~(isothermal)=4n~‘k,k3(y-yo)“dy(t-yo)2= (yI!:,!l k3ko(t-yo)o+3 
.h 

(9) 
Hence, from eqns. (6), (8) and (9) 

y,=t l- 

i [ * 

(m2;z)! E G;+$! (f)‘“’ 

i,j=l . * 

X 
(b’-(a+b)‘)(bj-(a+b)‘) “(a+3) 

(a+i+j+l)! 1 i 
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Thus, Y,, is a single-valued function of t and T, and Y, 2 0, when 8 > 0. For 
similar reasons we may also put V(isothermal) = V(non-isothermal) at t. 

Integrating from Y0 to t at constant temperature, we obtain from eqn. (9) 

v= ;I;;! k3ko( t - yo)u+4 

Obviously, this procedure is simpler than integrating eqn. (6) along a 
non-isothermal path at constant 8. 

If overlap between the growing spheres is to be taken into account, the 
right-hand side of eqn. (9) has to be multiplied by V_ - V, [1,2], where V, is 
the volume when the reaction is completed. Integrating at constant tempera- 
ture then gives, alternatively 

V - V 4na!2! 

-ln+--= 
k3k,(t -yJ+4 

00 (IJ + 4)! (11) 

where V/V, is the fraction of reaction, (Y. Equation (11) is an extended 
version of the Avrami-Erofeev equation to be used in non-isothermal 
analyses. Inspection shows that the application of these equations requires 
the overall energy barrier (3E + E,) to be calculated from non-isothermal 
data by iteration, assuming starting values of E and E,, in the expression for 

Yo. 
Equation (10) is well suited for computer calculations. The series con- 

verges fairly fast, provided the energy barriers and et/T are not too high. 
Moreover, the method should be quite accurate, taking the adopted model 
for granted. 

The results obtained depend on the assumed form of the rate constants 
and nucleation law in addition to spherical growth of the nuclei. A change in 
these conditions would invalidate the results. It is believed, however, that a 
similar approach could be adopted in related situations [2], giving rise to 
similar equations for the non-isothermal case. The isothermal form of the 
Avrami-Erofeev equation is formally independent of the temperature depen- 
dence of the rate constants, but otherwise dependent on nucleation law and 
the way the nuclei grow. 

Considering eqn. (lo), we note that B would have to change with t if T is 
to be held constant, because of the assumption that 8t = T - To in a single, 
non-isothermal process. Thus, each point in an isothermal process corre- 
sponds in a way to a non-isothermal experiment performed on an identical 
system at a constant heating rate, different for each point in the isothermal 
reaction. Thus, the same values of P and V, at t, are obtained along these 
two different paths having the same origin. This is in agreement with the 
circumstance that v and V are state functions (whereas the differential 
dV = P dt from eqn. (6) is inexact). 

y. and related functions have been plotted against time in Fig. 1 for a 
given set of parameter values. With normal pre-exponential factors, the 
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Fig. 1. y,, and related functions plotted against time. Basic parameter values are as follows: 
0=2, B=S K min-’ and E/((l/T(x)))/R = (E+ E,) (l/T(y))/ZR =lO. l/T in eqn. 
(10) is put equal to a constant for simplicity: l/T =l/SOCl K. Terms beyond the fifth in the 
series in eqn. (10) are ignored: y0 =r[l-(l-0.15t+0.130952xlO-‘r2-0.5357x10-’r’+ 

0.4467 x 10-4t4)“5]. 

reaction should be practically fulfilled within the indicated time span. As 
might be expected, corrections due to deviations from isothermal conditions 
become increasingly more important during the reaction. y, is an approxi- 
mate parabola of the form y = ax*. 

LIST OF SYMBOLS 

t 

X 

Y 
T 

T(x), T(Y) 

kl 
k 

r 

E,, E 
A,, A 
e 
V 
v 
NY) 
u 

actual time 
time ranging from y to t 

time ranging from 0 to t 

temperature at t 

temperature at x, y, respectiv.ely 
rate constant of nucleation at t 

rate constant of nuclear growth at t 

radius of growing sphere at t 

activation energies 
pre-exponential factors 
heating rate 
reaction volume at t 

rate of volume change at t 

rate of nuclear formation at y 
constant in power law of nucleation 
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